24,923 research outputs found

    Truss Decomposition in Massive Networks

    Full text link
    The k-truss is a type of cohesive subgraphs proposed recently for the study of networks. While the problem of computing most cohesive subgraphs is NP-hard, there exists a polynomial time algorithm for computing k-truss. Compared with k-core which is also efficient to compute, k-truss represents the "core" of a k-core that keeps the key information of, while filtering out less important information from, the k-core. However, existing algorithms for computing k-truss are inefficient for handling today's massive networks. We first improve the existing in-memory algorithm for computing k-truss in networks of moderate size. Then, we propose two I/O-efficient algorithms to handle massive networks that cannot fit in main memory. Our experiments on real datasets verify the efficiency of our algorithms and the value of k-truss.Comment: VLDB201

    Analyses of celestial pole offsets with VLBI, LLR, and optical observations

    Full text link
    This work aims to explore the possibilities of determining the long-period part of the precession-nutation of the Earth with techniques other than very long baseline interferometry (VLBI). Lunar laser ranging (LLR) is chosen for its relatively high accuracy and long period. Results of previous studies could be updated using the latest data with generally higher quality, which would also add ten years to the total time span. Historical optical data are also analyzed for their rather long time-coverage to determine whether it is possible to improve the current Earth precession-nutation model

    Switching of both local ferroelectric and magnetic domains in multiferroic Bi0.9La0.1FeO3 thin film by mechanical force

    Get PDF
    Cross-coupling of ordering parameters in multiferroic materials by multiple external stimuli other than electric field and magnetic field is highly desirable from both practical application and fundamental study points of view. Recently, mechanical force has attracted great attention in switching of ferroic ordering parameters via electro-elastic coupling in ferroelectric materials. In this work, mechanical force induced polarization and magnetization switching were investigated in a polycrystalline multiferroic Bi0.9La0.1FeO3 thin film using a scanning probe microscopy system. The piezoresponse force microscopy and magnetic force microscopy responses suggest that both the ferroelectric domains and the magnetic domains in Bi0.9La0.1FeO3 film could be switched by mechanical force as well as electric field. High strain gradient created by mechanical force is demonstrated as able to induce ferroelastic switching and thus induce both ferroelectric dipole and magnetic spin flipping in our thin film, as a consequence of electro-elastic coupling and magneto-electric coupling. The demonstration of mechanical force control of both the ferroelectric and the magnetic domains at room temperature provides a new freedom for manipulation of multiferroics and could result in devices with novel functionalities
    • …
    corecore